Central Memory CD8+ T Cells Appear to Have a Shorter Lifespan and Reduced Abundance As a Function of HIV Disease Progression

A Collaboration between J. “Mike” McCune’s & Marc K. Hellerstein’s Laboratories
Universities of California San Francisco & Berkeley, California, USA

Kristin Ladell
Cardiff University, UK
Immunodeficiency in HIV Infection

- Quantitative loss of CD4\(^+\) T cells
- Qualitative changes in cell populations that persist
 McCune JM. *Cell* (1991)

- Loss of recall, or “memory”, responses to antigen

- Loss of polyfunctional CD8\(^+\) “memory” T cells that are able to control HIV viral load

- Such memory responses represent the bedrock upon which the adaptive immune system is based
“Memory” in the T Cell Lineage and Generation and Maintenance of Memory CD8\(^+\) T Cells

- Memory T cells are thought to differentiate from naïve T cells after exposure to antigen
- .. persist for very long periods of time
- .. rapidly proliferate and differentiate into effector T cells after secondary contact with cognate antigen

- Requirements for generation and maintenance of memory CD8\(^+\) T cells include:
 - CD4\(^+\) T cell help
 - a cellular machinery that provides for either *self-renewal* (e.g., through arrested development mediated by transcriptional repressors) or for *limited homeostatic proliferation* (e.g. mediated by IL-7 through the IL-7R\(\alpha\)).

Fearon DT et al. Science (2001)
Luckey CJ et al. PNAS (2006)
Linear Differentiation or Post-thymic CD8+ T Cell Development*

CD45RA+CCR7+ \(\rightarrow \) CD45RA-CCR7+ \(\rightarrow \) CD45RA-CCR7- \(\rightarrow \) CD45RA+CCR7-

\(T_N \) \(\rightarrow \) \(T_{CM} \) \(\rightarrow \) \(T_{EM} \) \(\rightarrow \) \(T_{EMRA} \)

CD45RA+ \(\rightarrow \) CD45RA- \(\rightarrow \) CD45RA-(+)

CCR7+ \(\rightarrow \) CCR7- \(\rightarrow \) CCR7-(+)

CD28+ \(\rightarrow \) CD28- \(\rightarrow \) CD28-(+)

CD27+ \(\rightarrow \) CD27- \(\rightarrow \) CD27-(+)

CD57- \(\rightarrow \) CD57-(+) \(\rightarrow \) CD57-(+/-)

CD45RA+/-(+) \(\rightarrow \) CD45RA+/- \(\rightarrow \) CD45RA+(-)

CCR7- \(\rightarrow \) CCR7-(+) \(\rightarrow \) CCR7-(+/-)

CD28- \(\rightarrow \) CD28-(+) \(\rightarrow \) CD28-(+/-)

CD27- \(\rightarrow \) CD27-(+) \(\rightarrow \) CD27-(+/-)

CD57-(+) \(\rightarrow \) CD57-(+/-) \(\rightarrow \) CD57-(+/-)

Naive \(\rightarrow \) Early 1 \(\rightarrow \) Early 2 \(\rightarrow \) Intermediate \(\rightarrow \) Late 1 \(\rightarrow \) Late 2

In vivo 2H$_2$O or 2H-glucose Labelling showed that Higher Proportions of T Cells Are Short-lived in Advanced HIV Infection Compared to Healthy Controls

- These short-lived cells have a memory/effector phenotype

- Long-lived potential progenitor T cells may be reduced in advanced HIV infection

These Findings Led Us to Ask the Following Questions:

- What is the phenotype and the lifespan of long-lived memory CD8\(^+\) T cells in HIV-negative subjects?

- Does this phenotype and/or its lifespan change in the context of progressive HIV disease?
We also Wanted...

.. to evaluate the applicability of the stable isotope (\(^2\text{H}_2\text{O}\)) / FACS / mass spectrometric method for the analysis of low abundance T cell subpopulations
Stable Isotope *In Vivo* Labelling with $^{2}{H}_{2}O$

$^{2}{H}_{2}O$ Long-term oral administration

Labelling (7 weeks)

Label wash-out (3 w.)

De-labelling (8 weeks)

(FACS)

Cell Isolation (20,000 cells)

DNA

GC/MS

Enrichment of label in DNA from sample cells
Calculations of Decay Constants, Half-lives, and Percentages of CD8$^+$ T Cell Subpopulations Remaining after 7 Weeks of 2H$_2$O Labelling

• Loss of label from cellular DNA of each subset was quantified between S2 (week 10) and S4 (week 18)
• The decay constant (k) was calculated using the equation for exponential decay:
 \[k = \frac{-\ln(S2/S4)}{Dt} \]
• The half-life was calculated as:
 \[t_{1/2} = \frac{\ln(2)}{k} \]
• Some CD8$^+$ T cell subpopulations did not lose label exponentially, which is why we also calculated the percentage of initially incorporated label:
 \[\frac{S4}{S2} \]
Phenotypes of Sorted CD3⁺CD8⁺ T Cell Subpopulations

MEMORY & EFFECTOR

- T_{CM}
 - CD45RA⁻CD28⁺CCR7⁺
- T_{EM1}
 - CD45RA⁻CCR7⁻ (CD28⁺⁻)
- T_{EM2}
 - CD45RA⁻CD28⁻CCR7⁻

NAÏVE & “RA” EFFECTOR

- T_N
 - CD45RA^{high}CD28⁺CCR7⁺
- T_{EMRA}
 - CD45RA^{high}CD28⁻CCR7⁻
Characteristics of Study Subjects

<table>
<thead>
<tr>
<th>Group</th>
<th>Subject ID</th>
<th>Age (Years)</th>
<th>VL (copies/ml)</th>
<th>Years HIV-infected</th>
<th>CD4 count / µl of blood</th>
<th>CD8 count / µl of blood</th>
<th>Weeks of 2H2O labeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-negative</td>
<td>A</td>
<td>27</td>
<td>Negative</td>
<td>-</td>
<td>586</td>
<td>376</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>56</td>
<td>Negative</td>
<td>-</td>
<td>513</td>
<td>292</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>59</td>
<td>Negative</td>
<td>-</td>
<td>555</td>
<td>488</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>64</td>
<td>Negative</td>
<td>-</td>
<td>903</td>
<td>258</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>35</td>
<td>Negative</td>
<td>-</td>
<td>1289</td>
<td>563</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>35</td>
<td>Negative</td>
<td>-</td>
<td>832</td>
<td>246</td>
<td>ND</td>
</tr>
<tr>
<td>HIV-infected (untreated)</td>
<td>L</td>
<td>41</td>
<td>< 75</td>
<td>5</td>
<td>1028</td>
<td>998</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>40</td>
<td>8278</td>
<td>9</td>
<td>973</td>
<td>1500</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>40</td>
<td>2,059</td>
<td>NA</td>
<td>852</td>
<td>3388</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>52</td>
<td>713</td>
<td>5</td>
<td>784</td>
<td>1052</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>52</td>
<td>< 75</td>
<td>17</td>
<td>730</td>
<td>929</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>52</td>
<td>8469</td>
<td>16</td>
<td>657</td>
<td>1960</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Q</td>
<td>52</td>
<td>< 75</td>
<td>11</td>
<td>642</td>
<td>1067</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>59</td>
<td>87</td>
<td>15</td>
<td>615</td>
<td>1143</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>38</td>
<td>392</td>
<td>13</td>
<td>594</td>
<td>2079</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>41</td>
<td>2,220</td>
<td>NA</td>
<td>532</td>
<td>1764</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>42</td>
<td>6,897</td>
<td>11</td>
<td>493</td>
<td>884</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>38</td>
<td>30,851</td>
<td>NA</td>
<td>431</td>
<td>1646</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>37</td>
<td>16,212</td>
<td>6</td>
<td>360</td>
<td>578</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>36</td>
<td>448,343</td>
<td>NA</td>
<td>349</td>
<td>2445</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>41</td>
<td>17,090</td>
<td>11</td>
<td>331</td>
<td>1067</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>53</td>
<td>74,199</td>
<td>NA</td>
<td>330</td>
<td>1397</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>46</td>
<td>32,236</td>
<td>11</td>
<td>277</td>
<td>1207</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>40</td>
<td>15,534</td>
<td>15</td>
<td>170</td>
<td>1133</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>60</td>
<td>222,000</td>
<td>17</td>
<td>78</td>
<td>586</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Z</td>
<td>47</td>
<td>467,160</td>
<td>21</td>
<td>66</td>
<td>1281</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND not determined; NA not available

Median CD8 count:

HIV-negative subjects:

334 CD8 T cells/µl; range 246 – 563)

versus

HIV-infected subjects:

1175 CD8 T cells/µl; range 578-3388)

(p<0.002 HIV-negative versus HIV-infected)
Gating Strategy for Analysis & Sorting

FMO: CD45RA

FMO: CD28

FMO: CCR7

TEM1

TEM2

T CM

TN

TEMRA
T_{CM} Cells Are Lost with Decreasing CD4 Counts

HIV-neg.

CD4 count: 973 431 349 170 66

HIV+

CD28

CCR7

VL: 8,278 30,851 448, 343 15, 534 467,160
Decreased Numbers of CD8$^+$ \(T_{CM} \) cells / \(\mu l \) of Blood Correlate with Decreasing CD4 Counts

\[r = 0.50 \]
\[p = 0.02 \]
Label Die-away Curves of CD8+ T Cell Subpopulations

- TN
- TCM
- TEM2
- TEMRA

HIV- (64 yr)
HIV- (59 yr)
HIV- (56 yr)
HIV- (27 yr)
HIV+ (VL 2K)
HIV+ (VL 74K)
HIV+ (VL 2K)
HIV+ (VL 448K)
HIV+ (VL 30K)
2H Enrichment in CD8$^+$ T Cell Subpopulations

- HIV+ (VL 2K)
- HIV+ (VL 74K)
- HIV+ (VL 2K)
- HIV+ (VL 448K)
- HIV+ (VL 30K)
- HIV- (64 yr)
- HIV- (59 yr)
- HIV- (56 yr)
- HIV- (27 yr)

TN

TCM

TEM2

TEMRA
Shorter Half-life of CD8⁺ T_{CM} Cells in HIV-infected Subjects with High Viral Load

<table>
<thead>
<tr>
<th>CD3⁺CD8⁺ T cell subset</th>
<th>Group</th>
<th>HIV copies/ml (log₁₀)</th>
<th>k (decay constant)</th>
<th>T<sub>1/2</sub> (half-life in days)</th>
<th>Percentage of cells remaining</th>
<th>Cells/ul</th>
<th>% of CD3⁺CD8⁺ T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV-</td>
<td>-</td>
<td>0.0119</td>
<td>58.1</td>
<td>51.3</td>
<td>8.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>HIV-infected</td>
<td>4.3</td>
<td>0.0154</td>
<td>49.3</td>
<td>43.3</td>
<td>241.4</td>
<td>9.9</td>
</tr>
<tr>
<td>CD45RA⁻CCR7⁻CD28⁻ (TEM2)</td>
<td>HIV-</td>
<td>-</td>
<td>0.00007</td>
<td>9762</td>
<td>99.6</td>
<td>33.2</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>HIV-infected</td>
<td>4.3</td>
<td>0.0069</td>
<td>114.5</td>
<td>68.5</td>
<td>515.9</td>
<td>25.0</td>
</tr>
<tr>
<td>CD45RA⁺CCR7⁻CD28⁻ (TEMRA)</td>
<td>HIV-</td>
<td>-</td>
<td>0.0079</td>
<td>97.7</td>
<td>64.9</td>
<td>30.5</td>
<td>9.15</td>
</tr>
<tr>
<td></td>
<td>HIV-infected</td>
<td>4.3</td>
<td>0.0166</td>
<td>51.0</td>
<td>45.5</td>
<td>96.7</td>
<td>4.38</td>
</tr>
<tr>
<td>CD45RA⁺CCR7⁻CD28⁻ (TCM)</td>
<td>HIV-</td>
<td>-</td>
<td>0.00209</td>
<td>97.7</td>
<td>64.9</td>
<td>30.5</td>
<td>9.15</td>
</tr>
<tr>
<td></td>
<td>HIV-infected</td>
<td>4.3</td>
<td>0.0087</td>
<td>51.0</td>
<td>45.5</td>
<td>96.7</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td>HIV+</td>
<td>5.0</td>
<td>0.0240</td>
<td>28.8</td>
<td>26.0</td>
<td>66.1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>High VL</td>
<td>(± 0.6)</td>
<td>(± 0.0006)</td>
<td>(± 0.7)</td>
<td>(± 0.8)</td>
<td>(± 12.4)</td>
<td>(± 1.1)</td>
</tr>
<tr>
<td></td>
<td>HIV+</td>
<td>5.0</td>
<td>0.0240</td>
<td>28.8</td>
<td>26.0</td>
<td>66.1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>High VL</td>
<td>(± 0.6)</td>
<td>(± 0.0006)</td>
<td>(± 0.7)</td>
<td>(± 0.8)</td>
<td>(± 12.4)</td>
<td>(± 1.1)</td>
</tr>
<tr>
<td></td>
<td>HIV+</td>
<td>5.0</td>
<td>0.0240</td>
<td>28.8</td>
<td>26.0</td>
<td>66.1</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>High VL</td>
<td>(± 0.6)</td>
<td>(± 0.0006)</td>
<td>(± 0.7)</td>
<td>(± 0.8)</td>
<td>(± 12.4)</td>
<td>(± 1.1)</td>
</tr>
</tbody>
</table>

* p < 0.05, ** p < 0.01, *** p < 0.001 HIV-negative versus HIV-infected; ^ A p < 0.05 HIV-negative versus HIV-infected high VL
Lower Percentages of CD8⁺ T_{CM} Cells Remaining Correlate with Higher HIV VL

- **HIV-infected**
- **HIV-negative**

\[r = -0.90 \]
Expression of IL-7Rα or IL-18R1α on T$_{CM}$ or T$_{EMRA}$ CD8$^+$ T Cells

IL-7Rα

![Graph showing expression of IL-7Rα](image)

IL-18R1α

![Graph showing expression of IL-18R1α](image)

* $p<0.05$, ** $p<0.01$
Summary

• The different kinetic die-away patterns in different CD8⁺ T cell subpopulations demonstrate that the turnover of low-abundance T cell subpopulations can now be studied using the refined stable isotope / FACS / mass spectrometric method.

• Two long-lived CD8⁺ memory/effector T cell subpopulations were found: T_{CM} cells expressing IL-7Rα and T_{EMRA} cells, of which a high fraction expresses CD57.

• T_{CM} cells appear to have a shorter half-life in HIV-infected subjects than HIV-negative subjects and decline numerically with progressive HIV disease.

• T_{EMRA} cells had a long half-life in both HIV-infected and HIV-negative subjects and were significantly increased in all HIV-infected subjects irrespective of their VL.
Summary

• Accepted traits of hematopoietic stem cells (such as higher expression of the transcriptional repressor, bcl6b*, or cell surface expression of IL-18R1α**) could not be ascribed to these human CD8+ memory T cell subpopulations.

• However, a lower fraction of T_{CM} cells in HIV-infected individuals expressed IL-7Rα and the fraction of T_{CM} cells that expressed IL-7Rα trended to decrease with declining CD4 counts.

• The fraction of T_{EMRA} cells expressing IL-7Rα, IL-18Rα, or CD57 was also lower in HIV-infected individuals.

* MandersPM. et al. PNAS (2005)
** Luckey CJ. et al. PNAS (2006)
Conclusions

• These data are consistent with the hypothesis that IL-7Rα+ T_{CM} cells represent “true” memory CD8+ T cells, the loss of which may be responsible in part for the progressive loss of T cell memory function during progressive HIV infection.

• Further exploration of these observations may provide a more complete understanding of the manner in which the CD8+ T cell compartment is eroded, both numerically and functionally, as HIV disease advances.

Ladell K. et al. JI (2008) in press
Acknowledgements

McCune Lab
- Mike McCune
- Paul Baum
- Brinda Emu
- David Favre
- Joyce Trojano
- Mary Beth Hanley
- Diane Schmidt

UC Berkeley
- Marc Hellerstein
- Drina Boban
- Denise Cesar
- Ben Hunrichs
- Robert Busch
- Richard Neese
- Claire Emson
- Bridget McEvoy-Hein

Gladstone Flow Core
- Marty Bigos
- Valerie Stepps
- Tomasz Poplonski

Immunology Core
- Ck Poon
- Elizabeth Sinclair

Positive Health Program
- Steven Deeks
- Rebecca Hoh
- Marcia Smith, Joy Madamba, Regan Gage
- Rick Hecht, Peter Hunt & Jason Barbour

THE STUDY PARTICIPANTS

Nixon Lab
- Doug Nixon
- Brian Long
- Jennifer Snyder-Cappione